
1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering
Email: bkia -at- bu.edu

Embedded Linux

2

Linux
Linux has come a long way since its humble
beginnings in 1991
Today Linux supports a very wide range of
platforms, from Embedded Systems based on
ARM, PowerPC, Intel, and Hitachi
microprocessors to name a few, all the way up to
workstations, servers, and clusters
It also served as a launch pad for the open source
movement, and consequently lead to great
interest from academia and business alike

3

What is Linux?
Linux is free open source operating system which
is fully featured, portable, and extremely versatile
It runs on everything from PDAs to the largest
Mainframes
Unlike traditional proprietary software, Linux is
developed by a multitude of developers across
the world
People often (and mistakenly) use the term Linux
to refer to one of three disparate concepts:
• A Linux Distribution
• A Linux System
• The Linux Kernel

Our focus is primarily on the Linux Kernel, and
therefore the term Linux refers to the Kernel itself

4

Why Linux?
Due to its open source nature, Linux has a highly
qualified code base
The Kernel can be very small, it could fit onto a single
1.4MB floppy disk drive, while including all the
fundamental operating system tasks!
It is highly portable, it is available for almost every
microprocessor system in existence today
It is highly supported, it draws on the open source
community across the globe for both development and
support
It supports a multi-user environment with a built in
capability to concurrently execute applications
belonging to 2 or more users
Supports multi-processor systems
Well documented. The source code is available!

5

What is uClinux
uClinux is not Linux, it is a variant of it which runs
on processors which lack memory management
Without memory management, there is no
differentiation between user space and kernel
space, and therefore all applications run at
Privilege Level 0
Without memory management, all code runs in a
flat memory space, and therefore doesn’t require
a virtual memory subsystem
Therefore in this configuration all processes have
direct access to memory and I/O resources, and
device drivers are not necessary

6

What is a Linux Distribution?
A Linux distribution is a collection of software
components, including the Linux Kernel itself, as
well as the GNU toolchain (compiler, linker, etc.),
and a number of free and open source software
such as Emacs, X11, FTP, etc.
There are many companies involved in creating
distributions, such as RedHat, SUSE, and
Mandriva, and there are many community projects
dedicated to creating distributions (or distros)
such as Debian and Gentoo Linux
There are over 300 active Linux distribution
projects in existence today

2

7

Linux Distribution
Without distros, a person interested in Linux
would have install everything manually which
basically required a great expertise of the Unix
Operating System
Distros therefore making the process of installing
Linux easier, they usually provide both binaries
and source, and are segmented into packages,
each package providing one component of the
system such as font, web browser, etc.
Some popular Package Management Systems are:
• RPM – The RPM package manager
• deb – The Debian package
• tgz, or tar.gz – Archived tar and gzipped file, used to

distribute simple hand made packages

8

The Linux Kernel
The most important element of Embedded Linux
is its core, called the Linux Kernel
The Linux Kernel is maintained and distributed by
Linus Trovalds, who initially wrote the Kernel
when he was a student at the University of
Helsinki
Unlike proprietary Operating Systems, its source
code is available for anyone to freely use,
distribute, or modify
The latest released version of the Linux Kernel is
version 2.4, though development of the Linux
Kernel is of course ongoing and newer versions
become available on a regular basis

9

The Linux Kernel
Like any Operating System, the Linux Kernel is
responsible for managing resources (memory and
I/O), contains device drivers, networking stack, file
system, and performs other OS tasks
Linux implements different privilege levels, where
a module, which is a Kernel function runs in
kernel space (supervisor mode), and user
applications run in user space (user mode)
Linux can mange both multiple processes and
multiple processors (symmetric multiprocessing,
or SMP systems). As such, all kernel code is
reentrant

10

GNU
GNU is an acronym for GNU’s Not Unix, and is
pronounced guh-noo
The GNU project was started in 1983 with the goal
of creating a UNIX flavored operating system
which was freely distributable
GNU is not Linux! GNU is used in conjunction
with the Linux kernel to form a completely
operational Operating System. This GNU/Linux
combination (distribution) is often mistakenly
called Linux
Some software developed by the GNU project are:
Bash (command shell), Emacs (text editor), gzip
(data compression), and GNOME (graphical
desktop environment)

11

General Public License
The GNU General Public License, or GPL as it is
otherwise known is the free software license under
which Linux is written and distributed
The GPL grants the recipient of a computer program the
following rights:

• The freedom to run the program for any purpose
• The freedom to study how the program works and to

modify it
• The freedom to redistribute copies of the program
• The freedom to improve the program, and to redistribute

the improvements to the public
The GPL is in contrast to the end-user licenses that
plague proprietary software, which rarely grant the end-
user any rights

12

General Public License
The GPL has been at the center of controversy recently,
opponents of GPL often call it viral, implying that the
license acts as a virus in that once it comes in contact
with proprietary code, then the proprietary code
becomes GPL
This is an incorrect assessment as GPL simply requires
all copies of derived work to be GPL licensed
In another example, in 2003 the SCO group sued IBM
claiming that the latter had contributed portions of
SCO’s copyrighted code to the Linux Kernel and went
further by threatening legal action against a number of
companies and demanding licensing fees from them
To date, there is no proof to SCO’s claims of the use of
copyrighted code

3

13

Other Licensing Models
GPL is not the only licensing model available
Some licenses such as BSD permit distribution of
a modified BSD-based code as proprietary
software
The difference between GPL and BSD licenses is
legal mechanism known as copyleft, invented by
Richard Stallman (initiator of GNU project and
founder of Free Software Foundation)
Copyleft requires that derivative works of a GPL-
licensed application also be covered by the GLP
license

14

The Copyleft
The right to redistribute GPL-based code is granted
only if the licensee includes the source code in the
redistribution (including all modifications!)
The redistributed copies themselves are required to
include and be licensed under GPL in a mechanism
known as copyleft
Copyleft actually derives its legal impact from the fact
that the program is copyrighted!
Under a copyright, a licensee does not have the right to
modify or redistribute the code unless under the terms
outlined in copyleft
Therefore copyleft uses copyright law to accomplish an
almost opposite effect – granting modification and
redistribution rights

15

The GNU Toolchain

Linux relies on the GNU development
toolchain
A toolchain is series of programming
tools (assembler, compiler, linker, etc.)
which are used to create another
computer program
The tools are used sequentially, or in a
chain, in such a way that the output of
one program becomes the input of
another one, hence the term toolchain

16

The GNU Toolchain
The GNU toolchain is an overall term given to the
series of programming tools developed by the
GNU project
The projects include:
• GNU make – Build and compilation automation
• GNU Compiler Collection (GCC) – Compilers for

several programming languages
• GNU Binutils – Linker, assembler, and other tools
• GNU Debugger (GDB) – Interactive debugger

Other related projects are:
• GNU C Library – A standard C library
• CVS – Concurrent Version System

17

CVS

The Concurrent Versions System
implements a version control system to
keep track of all the work and changes in
a set of files
This enables developers from across the
globe to collaborate on a project and as
such as become a popular component of
the open-source development community

18

CVS
The way CVS works is as follows:
• Any number of clients (developers) can check-

out a full copy of a given project
• One or more developers can work on the same

copy of the code and then check-in their
modifications

• The CVS server automatically attempts to
merge the different changes

• If it is unsuccessful, for example in the case
where two developers are trying to modify the
same line of code, it rejects the second
developer from updating the code, and directs
the two developers to merge the code
manually

4

19

Developing a Linux System
There are three basic setup mechanisms which
developers use to develop code for Linux
• The Permanent Link Setup is where the host and the

target are permanently connected together via an
Ethernet cable for example. In this case a root file
system can be NFS-mounted which prevents the
need for constantly copying programs back and
forth

• The Removable Storage Setup is a situation where
the code is created on the host, copied onto a
removable storage device such as Compact Flash
and transferred to the target

• The Stand-alone Setup is a situation where the
toolchain is contained on the target, as could be the
case for creating embedded Linux on PC-based
platforms

20

Starting up Linux
From system power up to the time the
system is up and running, there are three
distinct steps the must be completed
• Bootloader is the first piece of code which

runs on the hardware and it is closely related
to the type of platform on which it runs. There
are many different types of bootloaders for
Linux

• Kernel Startup Code is the second stage of the
boot process and it too differs greatly
depending on the target platform

• Init is the final process which further initializes
the system

21

Linux Device Drivers
Most Linux users are happily unaware of the
complexities associated with the underlying
hardware
But every piece of the underlying hardware
requires a device driver be written for it, and this
is a job embedded system designers bravely
undertake
In the Linux Kernel there are many concurrent
processes which tend to various system
resources, such as memory, I/O, or the file system
Though the Kernel can have any number of
processes, it can basically be broken into the
following groups:

22

Linux Device Drivers

* Linux Device Drivers, Allesandro Rubini and Jonathan Corbet

23

Resource Management
Process Management
• It’s the Kernels task to manage processes, to

ensure that they can communicate with each other,
and that they are scheduled, created and disposed
of properly

Memory Management
• The Kernel is also responsible for handling memory

resources, providing a virtual address space and
memory management

Filesystem
• Filesystem is a major component of a UNIX (and

Linux) operating system. Almost every resource in
UNIX can be treated as a filesystem

24

Resource Management

Device Control
• The Kernel implements a device driver for

every hardware resource which is available on
the system, ranging from hard drives to Timer
modules

Networking
• Finally, the Kernel is responsible for providing

a networking stack to the higher-level
operating system functions

5

25

Classes of Devices
Unix differentiates its resources into
three classes of devices
Character Device
• One of the simplest classes of devices is the

character device
• It can be accessed as a stream of bytes and

implements functions such as open, close,
read and write

• A file is an example of a character device, as is
a serial port (dev/ttyS0), with the minor
difference that while you can only access a
character device resource sequentially, you
can move back and forth within a file

26

Classes of Devices
Block Devices
• Another class of devices is the block device, which

are closely tied to resource such as a Compact
Flash card where the resource can only be
accessed in multiples of blocks

• Unix enables an application to read and write blocks
like a character device, and therefore the difference
between a character device and a block device is
transparent to the user

Network Interfaces
• Finally, network resources are managed through

interfaces, which are generally hardware resources
in charge of transmitting and receiving data

27

Kernel Modules
Kernel functions are called modules, and they are
loaded and unloaded from memory using the
instmod and rmmod calls
Unlike traditional functions which are loaded and
executed completely, a kernel modules registers
itself using the instmod call in order to specify
which services it is capable of providing and
terminates itself afterwards

28

Example of a Kernel Module
#define MODULE
#include <module.h>

int init_module (void)
{

printk(“<1>Hello, initializing module…\n”);
return(0);

}

void cleanup_module(void)
{

printk(“<1>Thank you, & goodbye…\n”);
}

>gcc –c test.c
>instmod test.o
Hello, initializing module…
>

29

The Journaling Flash File System
JFFS is a log-structured file system designed by
Axis Communications AB in Sweden specifically
for use with flash devices on embedded systems
Since many embedded systems are battery
operated or may otherwise be suddenly and
uncleanly shut down, one of the major purposes
of a file system such as JFFS is to prevent data
corruption on such incidents
Another advantage of the JFFS is to provide wear-
leveling of Flash devices

30

How JFFS works
Nodes containing data and metadata are stored
sequentially on the flash chips
The entire flash device is then scanned at mount
time, with each node being read and interpreted to
build a hierarchical directory structure at boot
time
This is a process which is continued until the
system runs out of space, at which point it begins
to reclaim dirty space which contains old notes
that have been rendered obsolete
JFFS2 has since been in use, and it requires all of
the advantages of JFFS plus compression

6

31

Memory Management
Linux employs three memory management
schemes
• Logical Address, where each address contains a

segment and an offset
• Linear Address, a single 32-bit unsigned integer to

address memory from 0 to 4 GB
• Physical Address, the actual addressing scheme on

the system bus (the physical address provided to a
flash chip for instance)

The kernel translates a logical address into a
linear address through segmentation, and further
translates it into a physical address through
paging
Linux prefers paging over segmentation

32

Process Management
Linux uses 5 states to manage processes
• TASK_RUNNING: Process is either executing, or is

waiting to run
• TASK_INTERRUPTABLE: The process is

suspended until a certain condition is met
• TASK_UNINTERRUPTABLE: Task is suspended

until a condition is met and is uninterruptable until
the condition is met

• TASK_STOPPED: Process execution has been
terminated

• TASK_ZOMBIE: The process has been terminated
but the parent may still need information pertaining
to it and therefore the OS can’t discard the process

33

Process Management
Processes created in Linux have a parent/child
relationship, and sibling relationships between
child processes
Process 1 (init) is the parent of all other processes
The way Unix has traditionally handled creation of
child processes was that the resources available
to a parent process were duplicated and a copy
was provided to the child process
However, this is an inefficient mechanism,
specially if the parent depends on a large pool of
resources and creates many child processes
These include stack, memory, current working
directory, nice value, etc.

34

Fork()
Modern Unix systems, including Linux primarily
rely on a different mechanism, namely the fork()
and vfork() system calls to work around this
inefficiency
Both fork() and vfork() principally perform the
same function, that of creating a child process
Although fork() originally copied the entire
memory space of the parent process to the child,
with the introduction of vfork() and copy-on-write
mechanism, where the copying of the address
space is faked until modification time, there was
less justification for using vfork() anymore

35

Interrupt and Exception Handling
There are two sources of interrupts in Linux,
synchronous and asynchronous
Synchronous interrupts, better known as
exceptions, are generated by the CPU control unit
Asynchronous interrupts (known as interrupts)
are generated by hardware resources, such as
serial module, or timers
Interrupts are grouped into three different
categories of critical, non-critical, and deferrable
non-critical
The address of all the interrupt service routines
must be programmed into the Interrupt Descriptor
Table (IDT)

36

Interrupt and Exception Handling
The nature of an asynchronous interrupt is that it
happens at any time
If it happens during a time when the kernel is busy
performing an important function, then the kernel
must do the following:
• Switch over and execute as much of the interrupt

service routine as necessary
• Switch back and finish the remainder of the task it

was performing before the interrupt occurred
• Switch back yet again and finish the remainder of

the interrupt service routine
The first half of the interrupt service routine is
referred to as the top half, while the second half is
referred to as the bottom half

7

37

Interprocess Communication
Another of the kernel’s tasks is to handle
interprocess communication (IPC)
Signals and pipes are two mechanisms that Linux
uses to perform IPCs
A signal is a mechanism, like interrupts and
exceptions to notify processes of events.
However, unlike the two, a signal is also available
in the user space
For example, the kill() signal can be sent to a
process at any time to terminate it

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

